Comparative Burkholderia pseudomallei natural history virulence studies using an aerosol murine model of infection
نویسندگان
چکیده
Melioidosis is an endemic disease caused by the bacterium Burkholderia pseudomallei. Concerns exist regarding B. pseudomallei use as a potential bio-threat agent causing persistent infections and typically manifesting as severe pneumonia capable of causing fatal bacteremia. Development of suitable therapeutics against melioidosis is complicated due to high degree of genetic and phenotypic variability among B. pseudomallei isolates and lack of data establishing commonly accepted strains for comparative studies. Further, the impact of strain variation on virulence, disease presentation, and mortality is not well understood. Therefore, this study evaluate and compare the virulence and disease progression of B. pseudomallei strains K96243 and HBPUB10303a, following aerosol challenge in a standardized BALB/c mouse model of infection. The natural history analysis of disease progression monitored conditions such as weight, body temperature, appearance, activity, bacteremia, organ and tissue colonization (pathological and histological analysis) and immunological responses. This study provides a detailed, direct comparison of infection with different B. pseudomallei strains and set up the basis for a standardized model useful to test different medical countermeasures against Burkholderia species. Further, this protocol serves as a guideline to standardize other bacterial aerosol models of infection or to define biomarkers of infectious processes caused by other intracellular pathogens.
منابع مشابه
Comparative genomics and an insect model rapidly identify novel virulence genes of Burkholderia mallei.
Burkholderia pseudomallei and its host-adapted deletion clone Burkholderia mallei cause the potentially fatal human diseases melioidosis and glanders, respectively. The antibiotic resistance profile and ability to infect via aerosol of these organisms and the absence of protective vaccines have led to their classification as major biothreats and select agents. Although documented infections by ...
متن کاملCharacterization of Burkholderia pseudomallei Strains Using a Murine Intraperitoneal Infection Model and In Vitro Macrophage Assays
Burkholderia pseudomallei, the etiologic agent of melioidosis, is a gram-negative facultative intracellular bacterium. This bacterium is endemic in Southeast Asia and Northern Australia and can infect humans and animals by several routes. It has also been estimated to present a considerable risk as a potential biothreat agent. There are currently no effective vaccines for B. pseudomallei, and a...
متن کاملInnate Immune Responses of Pulmonary Epithelial Cells to Burkholderia pseudomallei Infection
BACKGROUND Burkholderia pseudomallei, a facultative intracellular pathogen, causes systemic infection in humans with high mortality especially when infection occurs through an infectious aerosol. Previous studies indicated that the epithelial cells in the lung are an active participant in host immunity. In this study, we aimed to investigate the innate immune responses of lung epithelial cells ...
متن کاملThe PmlI-PmlR quorum-sensing system in Burkholderia pseudomallei plays a key role in virulence and modulates production of the MprA protease.
Burkholderia pseudomallei is the causative agent of melioidosis, an often fatal infection of humans and animals. The virulence of this pathogen is thought to depend on a number of secreted proteins, including the MprA metalloprotease. We observed that MprA is produced upon entry into the stationary phase, when the cell density is high, and this prompted us to study cell density-dependent regula...
متن کاملOropharyngeal Aspiration of Burkholderia mallei and Burkholderia pseudomallei in BALB/c Mice
Burkholderia mallei and Burkholderia pseudomallei are potentially lethal pathogens categorized as biothreat agents due, in part, to their ability to be disseminated via aerosol. There are no protective vaccines against these pathogens and treatment options are limited and cumbersome. Since disease severity is greatest when these agents are inhaled, efforts to develop pre- or post-exposure proph...
متن کامل